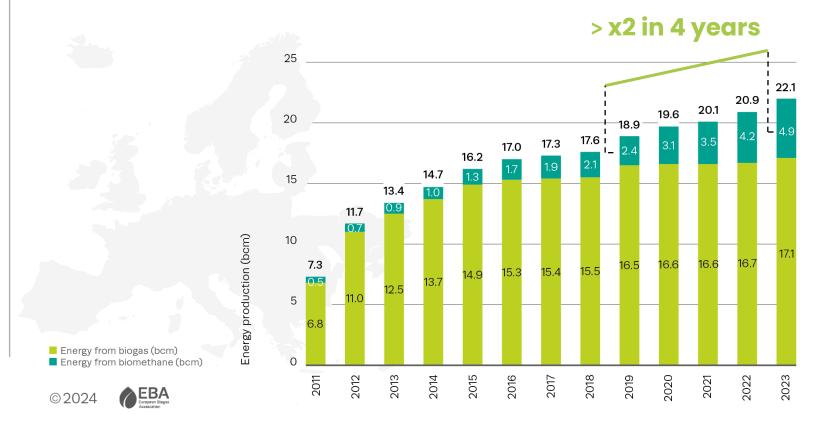
Biofertilisers in Europe – current and future policy developments

Projektet "Nya affärsmodeller för att öka värdet av rötrester och recirkulera näringsämnen"

12/11/2025

Lucile Sever, EBA Senior Policy Advisor

Representing the full European value chain


Biogases covered 7% of EU gas demand in 2023

22 bcm of combined biogas and biomethane production are produced today in Europe

- = Gas consumption of Belgium, Denmark and Ireland combined
- = 7% EU gas consumption in 2023

Combined biomethane and biogas production in Europe (bcm)

Digestate: an alternative to synthetic fertilisers

31 Mt (DM)

digestate produced Europe, **2022**

Digestate can already displace:

15%

Nitrogen-based fertilisers

(N demand in EU-27: 11.1 Mt/year)

11%

Phosphorus fertilisers

(P demand in EU-27: 2.8 Mt/year)

6%

Potassium fertilisers

(K demand in EU-27: 3.1 Mt/year)

GHG reduction potential when displacing synthetic N-fertilizers with digestate

10 Mt of CO₂ equivalent in 2022

Natural gas is the main feedstock and energy source to produce synthetic fertilisers

The replacement of 15% of synthetic nitrogen fertilisers with digestate could save today around 2 bcm of natural gas

Digestate is an enabler of carbon sequestration

9,3 Mt of Total Organic Carbon, 2022

More **stable organic carbon**, particularly **recalcitrant to biodegradation**

- > Potential for carbon sequestration
- Leads to humus and structure formation in the soil and increases its fertility, functionality, microbial activity, aeration, and water storage capacity

Carbon sequestration potential of digestate

% of remaining TOC after 1,5 year
86%
73%
56%
58%
43%

Reuland, G.; Sleutel, S.; Li, H.; Dekker, H.; Sigurnjak, I.; Meers, E. Quantifying CO₂ Emissions and Carbon Sequestration from Digestate-Amended Soil Using Natural ¹³C Abundance as a Tracer. Agronomy 2023, 13, 2501.

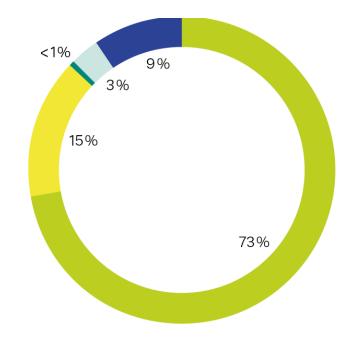
→ The application of (solid fraction) digestate on soil is both a **sustainable soil management** and a **carbon farming practice**

European digestate production

Most common end-use:

directly applied biofertiliser

Mostly non-separated digestate


Austria, Denmark, Germany, Poland, Slovakia, Sweden, and Ukraine

Mostly liquid digestate

Serbia, Croatia, Slovenia, UK, Switzerland and Belgium

Digestate end-uses in Europe

Digestate valorisation routes

Nutrient recovery Range of different char, hydrochar, biofuels value added products - Pyrolisis - Membrane filtration - Insects cultivation - Gasification - Reverse osmosis - Pretreatment agent - Hydrothermal carbonization Evaporation - Substrate for microbial fuel cells - Ammonia stripping and scrubbing - Medium for hydroponics - Struvite precipitation - Production of volatile fatty acids (VFAs) - Microalgae growth - Bio stimulants Solid Liquid **Novel** fraction fraction uses Separation Digestate

Digestate assessment

Two complementary pathways

Raw digestate

- Most common pathway (73% of applied directly)
- Local, circular, low-tech solution
- Provides combined fertiliser and soil improver benefits, aligned with EU goals (climate neutrality, strategic autonomy, soil regeneration)
- Perceived as waste by end-users → low or no market value
- In some countries, digestate management limits biogas development
- Particular challenges in Nitrate Vulnerable Zones (NVZs)
- Requires emission mitigation (N leaching, ammonia) via best agronomic practices

Post-processed digestate

- Currently limited deployment, but growing interest
- Enables cross-border trade, especially valuable in NVZs
- Processing is costly; viable business models still emerging
- Lack of planning → processing carried out by biogas producers, startups, biorefineries, or conventional fertiliser companies?; reluctance in synthetic fertiliser industry to integrate recycled nutrients
- Organic/recycled fertilisers struggle to compete with synthetics; few incentives to replace them
- No recognition of benefits of organic soil improvers (soil health, water retention, carbon seq)

How to unlock the uptake of digestate?

- 1. A shift from a manure input limit to a nutrient surplus threshold in the Nitrates Directive
 - 2. Practical and proportionate requirements for digestate-derived products in the EU Fertilising Products Regulation
 - 3. A bio-based content requirement for fertilisers under the Ecodesign for Sustainable Products Regulation

1. Nitrates Directive

Limit of 170 kg N/ha/y for manure-based digestate in NVZs, forcing farmers to supplement with synthetic fertilisers to meet crop needs

NITRATES
DIRECTIVE
EVALUATION
→ REVISION?

RENURE

Nitrates Directive evaluation

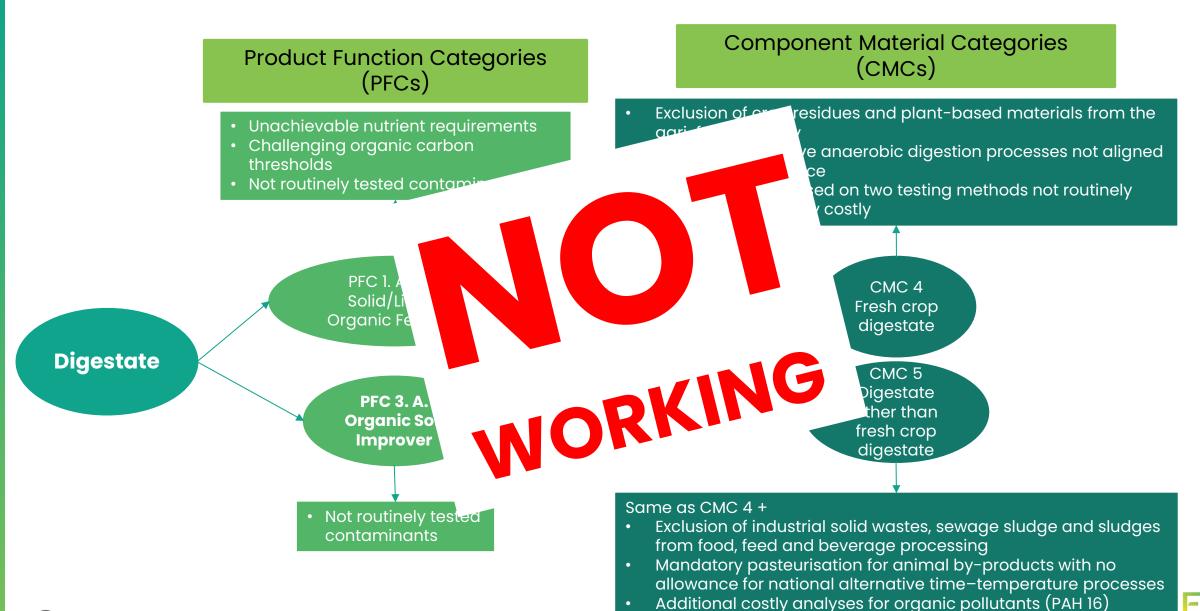
LONG-TERM: ongoing evaluation of the Directive (report expected end 2025)

→ towards a potential revision?

Digestate = lower risk of nitrate leaching than raw manure; equal to or lower risk of nitrate leaching than synthetic fertilisers with **best application practices**.

Need to break away from the fixed input limit towards a more effective method to address nitrate leaching while enabling the substitution of synthetic fertilisers with digestate.

RENURE ('recovered nutrients from manure')


SHORT-TERM: European Commission's proposal on RENURE, amending the Nitrates Directive, adopted in Nitrates Committee on 19/09 and currently under a 3-month scrutiny by the European Parliament and Council.

- RENURE fertilisers allowed above 170 kg N/ha/year
 - Only 3 product types: ammonium salts | mineral concentrate | struvite
 - Consistent quality (enforced by MS strict quality standards):
 mineral N:TN ratio ≥ 90% or TOC:TN ratio ≤ 3
 - Mandatory documentation: N and P₂O₅ content if >1% DM, max ±25% deviation
 - +80 kg N cap
 - Contaminants (Cu/Zn) & pathogen limits
 - No livestock increase in N-excess areas
 - Reinforced application & storage rules

2. Fertilising Products Regulation

3. Ecodesign for Sustainable Products Regulation

Challenge

The largest fertiliser producers today are not transitioning to the production of organic-based fertilisers, including the incorporation of digestate into their products.

Regulatory incentive

Establishing a minimum percentage of fertilisers containing blended recycled nutrients or of bio-based fertilisers to be sold/used at the EU level.

Fertilisers must be included in DG GROW study on bio-based and other non-fossil content requirements for products

Lucile Sever

sever@europeanbiogas.eu

Follow us on

www.europeanbiogas.eu

WEBINAR

EBA Statistical Report 2025

Fuelling Europe's clean path to independence

Register now!

10 DECEMBER 2025

10:00 - 11:00 CET

info@europeanbiogas.eu www.europeanbiogas.eu

